
 In Retrospect of UML based Software Size Metrics
Amita Sharma

#
, Preety Verma Dhaka**, Dr S.S.Sarangdevot

*

#Assistant Professor,

Dept of CS &IT, I.I.S University, Jaipur

**Research
*Director,

Dept of CS &IT, J.R.N University, Udaipur

Abstract—Size is important in the management of software

development because it is a reliable predictor of project effort,

duration, and cost. UML based Software Size metrics helps in

determining not only the size of software at design level but also

helps in understanding the behaviour and complexity of design.

Many researchers have proposed numerous software size metrics

for UML diagram like class diagram, sequence diagram, activity

diagram etc. They illustrated metrics with examples and

discussed the utility of each. This paper discusses the concept and

significance of software size metrics in software development and

a brief review of UML based software metrics. The goal of this

paper is to describe the reasons behind the origin of the software

size metrics.

Keywords— Software Size Metrics, UML, Class Diagram,

Sequence Diagram, Activity Diagram.

I. INTRODUCTION

A key element of any engineering process is measurement.

Measures are used to better understand the attributes of the

model that we create. Realizing the importance of software

metrics, numbers of metrics have been defined for software.

Software developers need to explicitly state the relation

between the different metrics measuring the same aspect of

software. The traditional view of software development takes

an algorithmic perspective. In this approach, the main building

block of all software is the procedure or function. As

requirements change, systems built with an algorithmic focus

turn out to be very hard to maintain. Measuring parameters

were function and code dependent.

The contemporary view of software development takes an

object-oriented perspective. In this approach, the main

building block of all software systems is the object or class.

Every object has identity, state, and behavior. Thus, the

Object-oriented systems have proven to be of value in

building systems in all sorts of problem domains and

encompassing all degrees of size and complexity [1]. Object

Oriented Design needed new quality meter for software

parameter estimation.

In today’s scenario quality with size is the main differentiator

between various software products. Due to this reason the

software designers and developers need valid measures for the

evaluation, improvement and validation of product quality

from initial stages [2].

Measuring complexity of software products was and still is a

widely scattered research project. Estimating quality and

complexity at early stages of SDLC helps in better

understanding of software and proves to be more reliable

product delivery. As it is still cost effective to make changes

to the system. As an emerging industrial standard for object-

oriented software analysis and design, UML has been widely

used in presenting and visualizing software architecture. UML

based metrics are trust worthy measurement and prevention

techquice form future failure that may occur due to poor

quality. These metrics estimates quality, complexity,

reliability, cost etc.

Software size is important in the management of software

development because it is a reliable predictor of project effort,

duration, and cost. Researchers were looking for faster,

cheaper, and more effective methods to estimate software size.

Many researchers proposed numerous software size metrics

for UML diagram like class diagram, sequence diagram,

activity diagram etc. They illustrated metrics with examples

and discussed the utility of each.

This paper in retrospect the concept and significance of

software size metrics in software development. The paper also

illustrates the different proposed software size metrics based

on UML. The novelty of this paper is to point out the reasons

behind the origin, importance and weakness of each Software

size metric.

The paper is organized as follows.Section 2 provides a

background of software sizing concept and research trends.

Section 3 discusses the origin, advantages and challenges in

different proposed UML sizing metrics. Section 4 illustrates

the empirical analysis observed and section 5 summarizes the

conclusions.

II. SOFTWARE SIZE METRICS: CONCEPT AND

SIGNIFICANCE

Software size is a key input to all software cost estimation

models. An accurate estimate of software size is an essential

element in the calculation of estimated project costs and

schedules. The fact that these estimates are required very early

on in the project makes size estimation a formidable task.

Software metrics measure different aspects of software

complexity and therefore play an important role in analyzing

and improving software quality [12011-14].Traditionally size

metrics has been classified as Loc and Cyclomatic complexity.

With the invasion of oo systems came into existence the need

for oo size metrics. Many researchers have contributed oo size

metrics in field of sw engg such as NMIMP (number of

 © 2015 IJEA. All Rights Reserved 42

International Journal of Engineering Associates (ISSN: 2320-0804) # 42 / Volume 4 Issue 11

methods implemented in a class), NMINH (number of

inherited methods in a class), NA (number of attributes in a

class), NUMPAR (number of parameters). C & k proposed six

oo metrics as WMC, LOC, CBO, DIT, NOC, and LCOM. Out

of these six, it can be noted that WMC can be a good indicator

for faulty classes and RFC is a good indicator for OO faults.

Average Method Complexity: (AMC): The goal of uml is to

provide a standard that can be used by all abject-oriented

methods and to select and integrate the best element of

precursor notations.. This section gives a brief study of

various metrics available for measuring the size of class

diagrams. Marches has emphasized on the relationships

among classes specifically the inheritance and dependency

relationships. The drawback of Marchesi’s metric has been

that the relationships as association, aggregation, and

composition are not considered while being the other essential

relationships of a class diagram. So, M.Genero has proposed a

group of indicators to measure the complexity of class

diagrams.

Further, in order to analyse the architecture complexity, In has

defined a metric tree which uses as input the UML diagrams

to output eight key indicators. Rufai’s Metric gives the

different similarity indicators for assessing the similarity

between a pair of UML models based on information from

their class diagrams. Zhou’s Metric discusses the number of

relationships, the interaction pattern, and the kinds of

relationships among the classes [8]. To distinguish the

complexities among the same kind of relationships and to

improve the Zhou’s Metric, the Kang’s Metric have been

proposed. Lorenz and Kidd have proposed a group of metrics

as design metrics that considers only the static features of the

software. Also, for measuring encapsulation, polymorphism

and inheritance in the object-oriented scenarios, Brito e Abreu

and Melo, has proposed the MOOD Metrics. Moreover, the

three C & K metrics that can be applied to UML class

diagrams are WMC, DIT and NOC.

Since Uml has a vast importance in the development of

Software designs , so measuring the uml designs has become

an important task for the software practitioners for which

they use the metrics in terms of size, complexity ,cost

estimation ,quality ,etc .A lot of studies have been made so

far in concern of class diagrams. Of uml .Considering a case

study for ―Hospital Management System‖, that includes

several modules providing variety of functions, the Hospital

Reception module is being explored via its use case diagram,

which uses the duties of hospital receptionist as different use

cases as follows:

1. Scheduling the patient's appointments

2. Admitting the patient to the hospital

3. Collecting the information from patient upon

patient's arrival and/or by phone

4. Allotment of bed in ward

5. Bed allotment to the patient in the ward

6. Receiving, providing the payment receipt, filing

insurance claims, medical reports and maintain a

database for the same. .

Here, we consider a case study of course management system

and exploring its activity diagram that basically are used for

depicting the various workflows involved in a system. Here

the course information is managed by the course administrator

and carries out the following activities:

 Checks whether the course exists

 If new course, then moves towards to the "Create

Course.

 Else if already existing course, then a check is to be

made on what operation are needed such as

modifying the course or removing the course

 The course administrator uses the modify operation

by, ―Modify Course" activity.

 The course administrator uses the remove operation

with the help of, the "Remove Course" activity .This

completes the activities involved used in the course

management system.

 © 2015 IJEA. All Rights Reserved 43

International Journal of Engineering Associates (ISSN: 2320-0804) # 43 / Volume 4 Issue 11

Report Based On Analysis

The two case studies aid us to measure the activity and use

case diagrams in terms of size. We selected the activity

diagram, because it shows the control flow of the actions and

it can be modeled on the lowest level of precision

(architecture, class, method, and attribute). Also, by using a

limited set of the UML diagrams, we solve the fo there is no

one to one mapping between behavior descriptions and the

source code and behavior does not always have to appear in

source code as explicit statements.

The size metrics such as actions gives the number of actions

involved and control flow gives the complexity of the activity

diagram. Also, for use case diagram metric numass metric

gives the number of associations the use case participates in

and extpts gives the number of extension points of the use

case. A benefit of using the class diagram as our structure

diagram is that there is a one to one mapping with the source

code. So, we needed another diagram that can be used to

model behavior. After some investigation, We need to model

the diagrams at the method and attribute level for generation

of source code, because the distance to the source code is very

little. The same goes for the class diagram, although this

diagram has the class level.

Result and Discussion

 Estimation of Size plays an important role in the field of

software development. Uml as a modelling language has also

increasingly emerged as a demanding trend in the software

industry. The measurement of the software programs based on

Uml design has therefore become the need of time. This paper

aimed at summarising the importance of size metrics both

traditional and also in concern of Uml. The future work is

aimed towards getting the ways to measure the attributes of

various Uml diagrams other than the class diagram.

UML Diagrams

Unified Modelling Language (UML) is popular today for

capturing requirements and for describing the overall

architecture of a software-intensive system. One of the UML

constructs is a use case, which graphically depicts the way in

which a user will interact with the system to perform one

function or one class of functions. Three aspects of use cases

can be helpful as inputs to a size estimate: the number of use

cases, the number of actors involved in each use case, and the

number of scenarios. An actor is a person or system that

interacts with the system under consideration; typically, there

is one actor per use case, but sometimes there are more. A

scenario is a potential outcome from using the software; the

number of scenarios can range from one to thousands or

millions, depending on the system and its complexity.

Figure: Characteristic Flow and Transformation Process

Applied in UML Designing Tool

This technique can be useful when the size estimate is

required after a UML specification is done. It can also be used

as a cross-check of another method; if the answers from both

methods are similar, the analysts may have more confidence

in the result.

Metrics of SDMetric

Metric NumAttr: The number of attributes in the class. The

metric counts all properties regardless of their type (data type,

class or interface), visibility, changeability (read only or not),

and owner scope (class-scope, i.e. static, or instance attribute).

Not counted are inherited properties, and properties that are

members of an association, i.e., that represent navigable

association ends.

Metric NumOps: The number of operations in a class.

Includes all operations in the class that are explicitly modelled

(overriding operations, constructors, destructors), regardless

of their visibility, owner scope (class-scope, i.e., static), or

whether they are abstract or not. Inherited operations are not

counted.

Metric NumPubOps: The number of public operations in a

class. This is same as metric NumOps, but only counts

operations with public visibility. It measures the size of the

class in terms of its public interface.

 © 2015 IJEA. All Rights Reserved 44

International Journal of Engineering Associates (ISSN: 2320-0804) # 44 / Volume 4 Issue 11

Metric Setters: The number of operations with a name

starting with 'set'. Note that this metric does not always yield

accurate results. For example, an operation settle Account will

be counted as setter method.

Metric Getters: The number of operations with a name

starting with 'get', 'is', or 'has'. Note that this metric does not

always yield accurate results. For example, an operation

isolate Node will be counted as getter method.

Metric Nesting: The nesting level of the class (for inner

classes). Measures how deeply a class is nested within other

classes. Classes not defined in the context of another class

have nesting level 0, their inner classes have nesting level 1,

etc. Nesting levels deeper than 1 are unusual; an excessive

nesting structure is difficult to understand, and should be

revised.

Metric IFImpl: The number of interfaces the class

implements. This only counts direct interface realization links

from the class to the interface. For example, if a class C

implements an interface I, which extends some other

interfaces, only interface I will be counted, but not the

interfaces that I extends (even though class c implements

those interfaces, too).

Metric NOC: The number of children of the class (UML

Generalization). Similar to export coupling, NOC indicates

the potential influence a class has on the design. If a class has

a large number of children, it may require more testing of the

methods in that class. A large number of child classes may

indicate improper abstraction of the parent class.

Metric NumDesc: The number of descendents of the class

(UML Generalization). This counts the number of children of

the class, their children, and so on.

Metric NumAnc: The number of ancestors of the class. This

counts the number of parents of the class, their parents, and so

on. If multiple inheritances are not used, the metric yields the

same values as DIT.

Metric DIT: The depth of the class in the inheritance

hierarchy. This is calculated as the longest path from the class

to the root of the inheritance tree. The DIT for a class that has

no parents is 0.Classes with high DIT inherits from many

classes and thus more difficult to understand. Also, classes

with high DIT may not be proper specializations of all of their

ancestor classes.

Metric CLD: Class to leaf depth. This is the longest path

from the class to a leaf node in the inheritance hierarchy

below the class.

Metric OpsInh: The number of inherited operations. A large

number of child classes may indicate ion of the parent class.

The number of descendents of the class (UML Counts the

number of children of the class, their number of ancestors of

the class. parents of the class, their parents, and so on. If

multiple inheritances are not used, the metric yields the same

values as The depth of the class in the inheritance This is

calculated as the longest path from the root of the inheritance

tree. The DIT for a class that has no parents is 0.Classes with

from many classes and thus is more difficult to understand.

Also, classes with high DIT may not be proper specializations

of Class to leaf depth. The longest path from the class to a leaf

node in the inheritance hierarchy number of inherited

operations. This is calculated as the sum of metric NumOps

taken over all ancestor classes of the class.

Lines of Codes

This method attempts to assess the likely number of lines of

code in the finished software product. Clearly, an actual count

can be made only when the product is complete; lines of code

are often considered to be inappropriate for size estimates

early in the project life cycle. However, since many of the

size-estimation methods express size in terms of lines of code,

we can consider lines of code as a separate method in that it

expresses the size of a system in a particular way.

Function Point Analysis

Function points were developed by Albrecht (1979) at IBM as

a way to measure the amount of functionality in a system.

Table: EI Table

FTR’s
DATA ELEMENTS

1-4 5-15 >15

0-1 LOW Low Average

2 LOW Average High

3 or More Average High High

Table: Shared EO and EQ Table

FTR’s
DATA ELEMENTS

1-5 6-19 >19

0-1 LOW Low Average

2-3 LOW Average High

> 3 Average High High

Table: Values for transactions

Rating
VALUES

EO EQ EI

Low 4 3 3

Average 5 4 4

High 7 6 6

Like all components, EQ’s are rated and scored. Basically, an

EQ is rated (Low, Average or High) like an EO, but assigned

a value like and EI. The rating is based upon the total

number of unique (combined unique input and out sides) data

elements (DET’s) and the file types referenced (FTR’s)

 © 2015 IJEA. All Rights Reserved 45

International Journal of Engineering Associates (ISSN: 2320-0804) # 45 / Volume 4 Issue 11

(combined unique input and output sides). If the same FTR is

used on the input and output side, then it is counted only one

time. If the same DET is used on the input and output side,

then it is only counted one time.

For both ILF’s and EIF’s the number of record element types

and the number of data elements types are used to determine a

ranking of low, average or high. A Record Element Type is a

user recognizable subgroup of data elements within an ILF or

EIF. A Data Element Type (DET) is a unique user

recognizable, non recursive field on an ILF or EIF.

Table: Table used to evaluate Rating of EI, EO, EQ

RET’s
DATA ELEMENTS

1-19 20-50 > 50

1 Low Low Average

2-5 Low Average High

> 5 Average High High

Table: Values for transactions for ILF & EIF

Rating
VALUES

ILF EIF

Low 4 3

Average 5 4

High 7 6

The counts for each level of complexity for each type of

component can be entered into a table such as the following

one. Each count is multiplied by the numerical rating shown

to determine the rated value. The rated values on each row are

summed across the table, giving a total value for each type of

component. These totals are then summed across the table,

giving a total value for each type of component. These totals

are then summed down to arrive at the Total Number of

Unadjusted Function Points.

The value adjustment factor (VAF) is based on 14 general

system characteristics (GSC's) that rate the general

functionality of the application being counted. Each

characteristic has associated descriptions that help determine

the degrees of influence of the characteristics. The degrees of

influence range on a scale of zero to five, from no influence to

strong influence. The IFPUG Counting Practices Manual

provides detailed evaluation criteria for each of the GSC'S, the

table below is intended to provide an overview of each GSC.

Rate each factor (Fi, i=1 to14) on a scale of 0 to 5

REFERENCES

[1] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology,

2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-

Verlag, 1998.

[2] J. Breckling, Ed., The Analysis of Directional Time Series:

Applications to Wind Speed and Direction, ser. Lecture Notes

in Statistics. Berlin, Germany: Springer, 1989, vol. 61.

[3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, ―A novel

ultrathin elevated channel low-temperature poly-Si TFT,‖

IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.

[4] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin,

―High resolution fiber distributed measurements with coherent

OFDR,‖ in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.

[5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, ―High-speed

digital-to-RF converter,‖ U.S. Patent 5 668 842, Sept. 16, 1997.

[6] (2002) The IEEE website. [Online]. Available:

http://www.ieee.org/

[7] M. Shell. (2002) IEEEtran homepage on CTAN. [Online].

Available: http://www.ctan.org/tex-

archive/macros/latex/contrib/supported/IEEEtran/

[8] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.

[9] ―PDCA12-70 data sheet,‖ Opto Speed SA, Mezzovico,

Switzerland.

[10] A. Karnik, ―Performance of TCP congestion control with rate

feedback: TCP/ABR and rate adaptive TCP/IP,‖ M. Eng. thesis,

Indian Institute of Science, Bangalore, India, Jan. 1999.

[11] J. Padhye, V. Firoiu, and D. Towsley, ―A stochastic model of

TCP Reno congestion avoidance and control,‖ Univ. of

Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02,

1999.

[12] Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specification, IEEE Std. 802.11, 1997.

 © 2015 IJEA. All Rights Reserved 46

International Journal of Engineering Associates (ISSN: 2320-0804) # 46 / Volume 4 Issue 11

